Week 14

Wednesday 24th June 2020

Year 6 Cube Numbers

Please watch the brief presentation on square, cube and triangular numbers to help you complete the challenge at the end: https://www.youtube.com/watch? $\mathrm{v}=$ yezeRz4J_e0

1b. Circle the odd one out.

$$
\begin{aligned}
& 5^{3}-25 \\
& 1^{3}+90 \\
& 4^{3}+36
\end{aligned}
$$

Explain your reasoning.)

2b. Bella says,

The number 27 is a cube number.

2a. Mo says,
The number 125 is a cube number.

Is he correct? Prove it.
Is she correct? Prove it.

3a. Solve the word problem below.
I am thinking of a number.
If I cube my number, then add 7, I get another cube number.

What number am I thinking of?

4a. Circle the odd one out.

$$
7^{3}+157
$$

$$
10^{3}-350
$$

$$
9^{3}-229
$$

Explain your reasoning.

局

5a. Ivan says,

Is he correct? Prove it.

4b. Circle the odd one out.

$$
\begin{aligned}
& 11^{3}+210 \\
& 9^{3}-384 \\
& 6^{3}+129
\end{aligned}
$$

Explain your reasoning.

5b. Kayleigh says,

Is she correct? Prove it.

6b. Solve the word problem below.
I am thinking of a number.
If I cube my number, then take away 169, I get another cube number.

What number am I thinking of?

Is he correct? Prove it.

9a. Solve the word problem below.
I am thinking of a number.
If I cube my number, then add the square number, I get the answer 810.

What number am I thinking of?

Is she correct? Prove it.
7b. Circle the odd one out.

$$
\begin{gathered}
10^{3}+712 \\
12^{3}-4^{2} \\
9^{3}+9^{2}
\end{gathered}
$$

Explain your reasoning.

8b. Kiran says,

9b. Solve the word problem below.
I am thinking of a number.
If I cube my number, then take away the square number, I get the answer 1,210.

What number am I thinking of?

Challenge

Square, cube and triangle numbers

List the first few square numbers:
1, 4, 9, ...

List the first few cube numbers.
1, 8, 27, ...

List the first few triangle numbers: $1,3,6, \ldots$

What would be the fifth cube? \qquad

What would be the fifth triangle? \qquad

Find two triangles that are also square numbers.

